In groundbreaking research, scientists have elucidated the effects of neuroinflammation on brain metabolism in Alzheimer's disease using the APPswe/PS1dE9 mouse model (MMRRC Strain # 034829). This study promises to enhance early diagnostic methods and the development of targeted treatments.

Methodology

Employing in vivo 2-photon microscopy alongside the Oxyphor 2P oxygen sensor, the team measured oxygen levels and capillary blood flow in the brains of mice before and after inducing neuroinflammation with lipopolysaccharide (LPS). Initially, Alzheimer's mice exhibited a lower metabolic demand than healthy counterparts, with similar capillary blood flow across both groups.

Results

After the LPS treatment, both groups showed significant decreases in oxygen levels with increased oxygen extraction, while capillary flow remained stable. These findings suggest that neuroinflammation primarily affects brain metabolism rather than blood flow, underlining its potential as a target for early intervention in Alzheimer's progression.

Broader Implications

The implications of this study extend beyond Alzheimer's disease, potentially offering insights into other conditions where neuroinflammation affects cognitive functions. This research underscores the importance of targeting inflammation in early therapeutic strategies and invites further investigation into the complex interactions between neuroinflammation and cerebral energetics.

References

Paper Source: 10.1186/s13195-024-01444-5
Mouse Model: APPswe/PS1dE9

View All News